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1 Introduction

A differential equation is an equation containing the derivatives (or differentials) of one

or more dependent variables, with respect to one or more independent variables.

EXAMPLE

• Current i(t) flowing in a circuit with applied e.m.f. E(t):

L
di

dt
+Ri = E(t)

• Angular displacement θ(t) of a rigid body pendulum:

I
d2θ

dt2
+mgh · sin θ = 0

• Mechanical vibrations:

m
d2x

dt2
+ c

dx

dt
+ kx = 0

Differential equations are classified according to type, order and linearity. If an equation

contains any ordinary derivatives of one or more dependent variables, with respect to a

single independent variable, it is then said to be an ordinary differential equation. The

order of the highest derivative in a differential equations is called the order of the equation.

A differential equation is said to be linear if it has the form

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x).

Note the power of each term involving y is one, and each coefficient an depends only on

the independent variable x. An equation that is not linear is said to be nonlinear.

EXAMPLE

(1) x dy + y dx = 0 ←− first-order, linear

(2) y′′ − 2y′ + y = 0 ←− second-order, linear

(3) yy′′ − 2y′ = x ←− second-order, nonlinear

(4)
d3y

dx3
+ y2 = 0 ←− third-order, nonlinear
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2 First-Order Differential Equations

The most general first-order differential equation has the form

f
(
x, y, y′

)
= 0.

Two common classes of such equations are

• Separable type:

dy

dx
= F (x) ·G(y)

• First-order linear type:

dy

dx
+ p(x)y = q(x)

2.1 Separable Differential Equations

The differential
dy

dx
= f(x, y) is said to be separable if the right-hand-side terms can be

written as a product of two factors:

dy

dx
= f(x, y) = F (x) ·G(y)

⇒ dy

G(y)
= F (x) dx provided G(y) ̸= 0

⇒
∫

dy

G(y)
=

∫
F (x) dx

Here F (x) contains x only, and G(y) contains y only.

EXAMPLE

Solve yy′ = x.

solution

dy

dx
=

x

y
provided y ̸= 0

⇒ y dy = x dx

Integrating both sides: ∫
y dy =

∫
x dx

⇒ 1

2
y2 =

1

2
x2 + c0

⇒ y2 = x2 + c (putting c = 2c0)
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This is the general solution, since c is an arbitrary constant.

note:

∗ first-order ode produces 1 arbitrary constant

∗ second-order ode produces 2 arbitrary constants

∗ nth-order ode produces n arbitrary constants

EXAMPLE

Solve y′ + 2y = 4 subject to y(0) = 0.

solution

dy

dx
= 4− 2y

⇒
∫

dy

4− 2y
=

∫
dx

⇒ −1

2
ln|4− 2y| = x+ c

⇒ ln|4− 2y| = −2(x+ c)

⇒ 4− 2y = e−2(x+c) since e−(x+c) > 0

⇒ y = 2− 1

2
e−2(x+c)

= 2 + Ae−2x with A = −1

2
e−2c

Applying the condition y(0) = 0:

0 = 2 + Ae0 ⇒ A = −2

Thus, the particular solution is

y(x) = 2
(
1− e−2x

)
.

EXAMPLE

The mass M of a radioactive substance is initially 10 g, and 20 years later its mass

is 9.6 g. Given that the rate of decay of a radioactive substance is proportional to

the mass of that substance present at any time t, in how many years will the mass

be halved (half-life) ?

Governing equation:

−dM
dt
∝M (M in grams and t in years)

⇒ dM

dt
= −kM where k is a proportionality constant.
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Separating the variables and integrating both sides:∫
dM

M
= −k

∫
dt

⇒ ln|M | = −kt+ c

⇒ M(t) = e−kt+c

= Ae−kt where A = ec = constant.

Two constants (A, k) require two known conditions:

when t = 0, M = 10: 10 = Ae0 = A

⇒M = 10e−kt

when t = 20, M = 9.6: 9.6 = 10e−20k

⇒ ln 0.96 = −20k

⇒ −k = 0.05 ln 0.96

⇒ M(t) = 10e0.05t ln 0.96

when M = 5, t =?: 5 = 10e0.05t ln 0.96

⇒ ln 0.5 = 0.05t ln 0.96

⇒ t =
20 ln 0.5

ln 0.96

≈ 340 years.

2.2 First-Order Linear Differential Equations

General form of n-order linear differential equation:

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x).

When n = 1, we obtain the first-order linear differential equation:

a1(x)
dy

dx
+ a0(x)y = g(x).

Rewriting this equation as

dy

dx
+

a0(x)

a1(x)︸ ︷︷ ︸
= p(x)

y =
g(x)

a1(x)︸ ︷︷ ︸
= q(x)

provided a1(x) ̸= 0

⇒ dy

dx
+ p(x)y = q(x) ←− linear in both y & y′, coefficient of y′ is 1. (1)
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To solve this differential equation, we multiply both sides of (1) by some function I(x),

such that the left-hand-side term becomes an exact derivative,

I(x)
dy

dx
+ I(x)p(x)y = I(x)q(x), (2)

and
d

dx

(
Iy

)
= I

dy

dx
+ y

dI

dx
. (3)

We want the left-hand-side of (2) same as the left-hand-side of (3):

d

dx

(
Iy

)
= I

dy

dx
+ y

dI

dx
= I

dy

dx
+ Ipy

⇒ dI

dx
= Ip

⇒ dI

I
= p dx

Thus, ∫
dI

I(x)
=

∫
p(x) dx

⇒ ln
∣∣I(x)∣∣ = ∫

p(x) dx

⇒
∣∣I(x)∣∣ = e

∫
p(x) dx

⇒ I(x) = e
∫
p(x) dx since e

∫
p(x) dx > 0 for all x (4)

= integrating factor

With I(x) given by (4), Equation (1) can then be solved as

d

dx

[
I(x)y(x)

]
= I(x)q(x)

⇒ y(x) =
1

I(x)

∫
I(x)q(x) dx ←− coefficient of y′ is 1

EXAMPLE

Solve xy′ − 4y = x6ex.

solution

Rewrite this equation such that the coefficient of y′ is 1:

dy

dx
− 4

x
y = x5ex ←− p(x) = −4/x, q(x) = x5ex

Integrating factor I(x):

I(x) = e
∫
p(x) dx

= e−
∫

4
x
dx
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= e−4 ln|x|

= eln|x|
−4

=
1

x4
provided x ̸= 0.

Thus,
d

dx
(Iy) = Iq becomes

d

dx

(
y

x4

)
=

x5ex

x4

= xex

⇒ y

x4
=

∫
xex dx

⇒ y = x4

∫
xex dx

Applying integration by parts method to the above integral by letting u = x,

du = dx, dv = ex dx and v = ex, we obtain∫
xex dx = uv −

∫
v du

= xex −
∫

ex dx

= xex − ex + c.

General solution:

y(x) = x4
(
xex − ex + c

)
= x4(x− 1)ex + cx4.

EXAMPLE

Salt solution containing 2 g/lt of salt flows into a tank initially filled with 50 lt

of water containing 10 g of salt. If the solution enters the tank at 5 lt/min, the

concentration is kept uniform by stirring, and the mixture flows out at the same

rate, find the amount of salt in the tank after 10mins.

solution

Suppose there are Q g of salt in the tank after tmins. Since 5 lt of salt solution

enter and leave the tank each minute, the tank will contain 50 lt of solution at any

time t. Therefore, the solution concentration will be Q
50
g/lt, and since it flows out

at 5 lt/min, the rate of outflow is Q
50
× 5 = Q

10
g/min, while the inflow rate is 2 g/lt

× 5 lt/min=10 g/min.
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Rate of increase of Q(t):

dQ

dt
= inflow rate− outflow rate

= 10− Q

10

⇒ dQ

dt
+

Q

10
= 10

Solve for Q(t):

I = e
∫

1
10

dt = et/10

⇒ d

dt

(
et/10Q

)
= 10et/10

⇒ et/10Q = 10

∫
et/10 dt

= 100et/10 + c

⇒ Q = 100 + ce−t/10

When t = 0, Q = 10 g:

10 = 100 + ce0 ⇒ c = −90.

Thus,

Q(t) = 100− 90e−t/10.

After 10 mins (t = 10):

Q(t = 10) = 100− 90e−10/10

= 100− 90/e

≈ 66.9 g of salt.

3 Second-Order Differential Equations

A nth-order linear differential equation,

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x)

is said to be nonhomogeneous if g(x) ̸= 0 for some x values. If g(x) = 0 for every x,

then the differential equation is said to be homogeneous. We only concerned with finding

solutions of second-order linear differential equation with real constant coefficients,

a
d2y

dx2
+ b

dy

dx
+ cy = g(x)

where a, b, c are real constants.
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3.1 Homogeneous Equation

Homogeneous equation:

a
d2y

dx2
+ b

dy

dx
+ cy = 0

Let y1(x) and y2(x) be solutions of this equation. According to the superposition principle,

the linear combination,

y(x) = C1y1(x) + C2y2(x),

where C1 and C2 are arbitrary constants, is also a solution of such homogeneous equation.

All solutions are either exponential functions, or are constructed out of exponential func-

tions. If we try a solution of the form

y(x) = emx

where m is a constant, then y′ = memx, y′′ = m2emx:

am2emx + bmemx + cemx = 0

⇒ am2 + bm+ c = 0 since emx ̸= 0 ←− characteristic equation

⇒ m =
−b±

√
b2 − 4ac

2a

Three cases to be considered (C1, C2, C3, C4 are constants):

• b2 − 4ac > 0 ;

Characteristic equation has two distinct real roots m1 and m2 giving

y(x) = C1e
m1x + C2e

m2x

• b2 − 4ac < 0 ;

Characteristic equation has complex conjugate roots m1,m2 = α± iβ where

i =
√
−1, giving

y(x) = C3e
(α+iβ)x + C4e

(α−iβ)x

Utilising the Euler’s formula,

e±iθ = cos θ ± i sin θ,
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solution y(x) can be expressed as

y(x) = eαx
[
C3e

iβx + C4e
−iβx

]
= eαx

[
C3

(
cos(βx) + i sin(βx)

)
+ C4

(
cos βx− i sin βx

)]
= eαx

[
(C3 + C4)︸ ︷︷ ︸

= C1

cos(βx) + i(C3 − C4)︸ ︷︷ ︸
= C2

sin(βx)
]

= eαx
[
C1 cos βx+ C2 sin βx

]
• b2 − 4ac = 0 ;

Characteristic equation has two equal real roots m1 = m2 = −
b

2a
giving

y(x) = (C1x+ C2)e
m1x

EXAMPLE

Solve 2y′′ − 5y′ − 3y = 0.

solution

Solve for the characteristic equation:

2m2 − 5m− 3 = 0

⇒ (2m+ 1)(m− 3) = 0

⇒ m = −1/2, 3

General solution:

y(x) = C1e
−x/2 + C2e

3x.

EXAMPLE

Solve y′′ − 10y′ + 25y = 0.

solution

From the characteristic equation:

m2 − 10m+ 25 = (m− 5)2 = 0 ⇒ m1 = m2 = 5,

we have repeated roots, thus the general solution is

y(x) = (C1x+ C2)e
5x.
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EXAMPLE

Solve y′′ + y′ + y = 0.

solution

Characteristic equation:

m2 +m+ 1 = 0

⇒ m =
−1±

√
1− 4(1)(1)

2

=
−1± i

√
3

2

= α± iβ.

Identifying α = −1

2
and β =

√
3

2
, the general solution is

y(x) = e−x/2
[
C1 cos

(√
3
2
x
)
+ C2 sin

(√
3
2
x
)]

.

EXAMPLE

Solve y′′ − 4y′ + 13y = 0, subject to y(0) = −1 and y′(0) = 2.

solution

Characteristic equation:

m2 − 4m+ 13 = 0

⇒ m =
4±
√
16− 52

2

=
4± 6i

2

= 2± 3i

General solution:

y(x) = e2x
[
C1 cos(3x) + C2 sin(3x)

]
The condition y(0) = −1 implies that

−1 = e0(C1 · 1 + C2 · 0)

= C1

⇒ y(x) = e2x
[
C2 sin(3x)− cos(3x)

]
Differentiating this equation with respect to x, and using y′(0) = 2 gives

dy

dx
= e2x

[
3C2 cos(3x) + 3 sin(3x)

]
+ 2e2x

[
C2 sin(3x)− cos(3x)

]
⇒ 2 = e0(3C2 + 0) + 2e0(0− 1)

= 3C2 − 2
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⇒ C2 = 4/3

Particular solution:

y(x) = e2x
[
4

3
sin(3x)− cos(3x)

]
.

3.2 Nonhomogeneous Equation

Any function yp(x), free of arbitrary parameters, that satisfies

a
d2y

dx2
+ b

dy

dx
+ cy = g(x),

where a, b, c are constants, and g(x) is continuous is said to be a particular integral of

the equation.

We solve the nonhomogeneous equation in three steps:

(1) Solve the associated homogeneous equation to get the complementary function,

denoted by yC(x),

a
d2yC
dx2

+ b
dyC
dx

+ cyC = 0.

(2) Find the particular integral, yP (x), of the nonhomogeneous equation.

(3) Add yC(x) and yP (x) to form the general solution of the nonhomogeneous equation,

y(x) = yC(x) + yP (x).

When g(x) consists of

(i) a constant k,

(ii) a polynomial in x,

(iii) an exponential function eαx,

(iv) trigonometric functions sin(βx) and cos(βx),

or finite sums and products of these functions, it is usually possible to find yP (x) by the

method of undetermined coefficients. Other techniques, such as variation of parameters,

are available for more general g(x).
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EXAMPLE

Solve y′′ + 8y′ = 24.

solution

Solving y′′C + 8y′C = 0 for the complementary function:

m2 + 8m = m(m+ 8) = 0 ←− characteristic equation

⇒ m = 0,−8

⇒ yC = C1e
0·x + C2e

−8x

= C1 + C2e
−8x

Solving y′′P + 8y′P = 24 for the particular integral:

Try yP = A (constant),

y′P = 0,

y′′P = 0,

⇒ y′′P + 8y′P = 0 + 0 = 24 −→ No solution!

Since there is a constant in yC , namely C1, and there is also a constant term (A) in

the proposed yP , this will not work! Instead, multiple yP by x, and try again,

Try yP = Ax,

y′P = A,

y′′P = 0,

⇒ y′′P + 8y′P = 0 + 8A = 24

⇒ A = 3

⇒ yP = 3x.

General solution:

y(x) = yC + yP

= C1 + C2e
−8x + 3x

check:

y = C1 + C2e
−8x + 3x,

y′ = −8C2e
−8x + 3,

y′′ = 64C2e
−8x,

⇒ y′′ + 8y′ = 64C2e
−8x + 8

(
−8C2e

−8x + 3
)

= 64C2e
−8x − 64C2e

−8x + 24
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= 24

= g(x) as required!

Note that if yp = Ax fail to work, try yP = Ax2 (multiply yP by x again).

Repeat this step until you can solve for yP .

EXAMPLE

Determine the solution of y′′ − 2y′ − 3y = 8e3x, subject to y(0) = y′(0) = 0.

solution

Characteristic equation:

m2 − 2m− 3 = 0

⇒ (m− 3)(m+ 1) = 0

⇒ m = −1, 3.

Complementary function:

yC = C1e
−x + C2e

3x.

Particular integral:

Try yP = Ae3x ←− This will not work!

Try yP = Axe3x,

y′P = Ae3x + 3Axe3x

= A(1 + 3x)e3x,

y′′P = A(3)e3x + 3A(1 + 3x)e3x

= A(6 + 9x)e3x,

⇒ y′′P − 2y′P − 3yP = A(6 + 9x)e3x − 2A(1 + 3x)e3x − 3Axe3x

= A(6 + 9x− 2− 6x− 3x)e3x

= 4Ae3x.

Equating 4Ae3x = 8e3x yields A = 2. Hence, yP (x) = 2xe3x.

General solution:

y(x) = C1e
−x + C2e

3x + 2xe3x

= C1e
−x + (C2 + 2x)e3x.

Also,

y′(x) = −C1e
−x + 2e3x + 3(C2 + 2x)e3x
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= −C1e
−x + (2 + 6x+ 3C2)e

3x.

Applying condition, x = 0, y = 0:

0 = C1 + C2 ⇒ C2 = −C1.

Applying condition, x = 0, y′ = 0:

0 = −C1 + (2 + 3C2) = 2 + 4C2 ⇒ C2 = −
1

2
, C1 = −C2 =

1

2
.

Particular solution:

y(x) =
1

2
e−x +

1

2

(
4x− 1

)
e3x.

EXAMPLE

Solve y′′ − 2y′ − 3y = sinx.

solution

Complementary function (from previous example):

yC = C1e
−x + C2e

3x.

Particular integral:

Try yP = A sinx ←− This will not work!

Try yP = A cosx ←− This will not work either!

Try yP = A sinx+B cos x ←− Need both circular functions to work.

y′P = A cosx−B sinx,

y′′P = −A sinx−B cos x,

⇒ y′′P − 2y′P − 3yP = −A sinx−B cos x− 2(A cosx−B sin x)− 3(A sinx+B cos x)

= (−4A+ 2B) sin x+ (−2A− 4B) cos x

= sinx.

This requires

−4A+ 2B = 1 ⇒ B = 1
2
+ 2A

−2A− 4B = 0 ⇒ 2A = −4B = −2− 8A ⇒ 10A = −2

Hence, A = −1/5 and B = 1/10.

General solution:

y(x) = C1e
−x + C2e

3x − 1

5
sin x+

1

10
cosx.
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EXAMPLE

Solve y′′ + 2y′ + 2y = −10xex + 5 sin x.

solution

Characteristic equation:

m2 + 2m+ 2 = 0

⇒ m =
−2±

√
4− 8

2

=
−2± 2i

2

= −1± i where i =
√
−1.

Complementary function:

yC = e−x(C1 cos x+ C2 sinx).

Here

g(x) = −10xex + 5 sinx,

and

g′(x) = −10ex − 10xex + 5 cos x,

indicates that the particular integral should take the following form,

yP (x) = Axex +Bex + C sinx+D cos x,

where A, B, C and D are constants. Thence.

y′P = Aex + Axex +Bex + C cos x−D sinx

= (A+ Ax+B)ex + C cosx−D sin x,

y′′P = Aex + (A+ Ax+B)ex − C sin x−D cos x

= (2A+ Ax+B)ex − C sin x−D cosx,

⇒ y′′P + 2y′P + 2yP = (2A+ Ax+B + 2A+ 2Ax+ 2B + 2Ax+ 2B)ex

+ (−C − 2D + 2C) sin x+ (−D + 2C + 2D) cos x

= (4A+ 5B)ex + 5Axex + (C − 2D) sinx+ (2C +D) cos x.

This requires that

5A = −10 ⇒ A = −2,

4A+ 5B = 0 ⇒ 5B = −4A = 8 ⇒ B = 8/5,

C − 2D = 5 ⇒ C = 5 + 2D,

2C +D = 0 ⇒ D = −2C = −10− 4D ⇒ D = −2, C = 1.
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Particular integral is

yP (x) = −2xex +
8

5
ex + sin x− 2 cos x.

General solution is

y(x) = e−x(C1 cos x+ C2 sinx) + sin x− 2 cos x+
(
8/5− 2x

)
ex.
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4 Review Questions

[1] Find the general solutions of the following differential equations:

(a)
dy

dx
− 2xy = 0 ;

(b) xyy′ = 1 + x ;

(c) y′ − 2y = x ;

(d) y′ cosx− y sinx = sin x.

[2] Determine the solution of y′ + 2y = 4 with y(0) = 0.

[3] Find the solution of
dy

dx
=

x2 + y2

2xy
by putting y = vx.

[4] A body is cooling in surroundings maintained at 10◦C. Its temperature θ◦C after t

minutes is given by
dθ

dt
= −k(θ − 10),

where k is a constant. If the temperature of the body is initially 70◦C and 10

minutes later is 40◦C,

(a) show that k = 1
10
log 2 ;

(b) find the body’s temperature after a further 15 minutes.

[5] An e.m.f. E(t) is applied to an electrical circuit containing a resistance R in series

with an inductance L. The current i(t) at time t in the circuit is given by the

solution of

L
di

dt
+Ri = E(t),

where i(0) = 0. Determine i(t) when E(t) = E0 sin(ωt), where E0 and ω are

constants.

[6] Determine the solution of the differential equation,

dy

dx
+

2

x
y =

cos x

x2
,

which satisfies y(π) = 1.

[7] Determine the general solution of each of the following differential equations:

(a) y′′ − y′ − 6y = 0,

(b) y′′ + 2y′ + 10y = 0,

(c) y′′ − 9y = 0,
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(d) y′′ − 9y′ = 0.

[8] Determine the solution of y′′ − 2y′ − 3y = 8e3x, subject to y(0) = y′(0) = 3.

[9] Determine the general solution of each of the following differential equations:

(a) y′′ − y′ − 2y = 4 cosh(2x),

(b) y′′ + 2y′ + y = ex cosx,

(c) y′′ − 3y′ + 2y = 6xe−x.

[10] A constant e.m.f. E0 volts is applied to a circuit containing, in series, a resistance R

ohms, an inductance L henries and a condenser having capacitance C farads. The

charge q(t) in the condenser (which is initially uncharged) is given by

L
d2q

dt2
+R

dq

dt
+

q

C
= E0.

If the values of resistance, conductance and capacitance take the values, R = 100,

L = 1/200, C = 10−6 and E0 = 103, show that

q(t) = 10−3 + e−αt
(
A cos(αt) +B sin(αt)

)
where α = 104.

[11] A body of unit mass moves along the x-axis under the action of

• a force of magnitude ω2x directed towards the origin,

• a driving force governed by e−λt cos(bt),

• a frictional resistance defined by 2λẋ, where ẋ is the speed of the body.

The displacement x(t) at time t is given by

ẍ+ 2λẋ+ ω2x = e−λt cos(bt).

If the body starts from rest at the origin, and ω > λ, obtain x(t) for the following

two cases:

(a) b =
√
ω2 − λ2 ,

(b) b ̸=
√
ω2 − λ2 .

[12] The angular displacement θ(t) of a rigid body pendulum oscillating about a fixed

axis is governed by

I
d2θ

dt2
= −mgh · sin θ,

where m, g, h and I are constants. For small oscillations (that is, when θ is small),

we can use sin θ ≈ θ. Show that for small oscillations, the motion is simple harmonic

in nature with period 2π
√

I/(mgh).
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[13] An e.m.f. E0 sin(ωt) is applied to an electrical circuit comprising a resistance R, an

inductance L and a capacitance C in series. The current i(t) in the circuit at time

t satisfies the following differential equation,

L
d2i

dt2
+R

di

dt
+

i

C
= E0ω cos(ωt).

If R2C < 4L, determine i(t) for the case when i(0) = 0 and di
dt
(0) = 0.

[14] Determine the solution of the differential equation,

dy

dx
− 3y = e5x + e3x cos(2x),

which satisfies y(0) = 0.

[15] (a) Determine the general solution of y′′ − 4y′ = 0.

(b) Using the result from (a), determine the general solutions of

(i) y′′ − 4y′ = 8e2x ;

(ii) y′′ − 4y′ = 3e4x ;

(iii) y′′ − 4y′ = −16x .

[16] A model for the growth of a population of size N is governed by

dN

dt
= kN −Q,

where k is the difference between the birth and death rates, and Q is the emigration

rate. Both k and Q are assumed to be positive constants.

(a) Solve this differential equation subject to the initial condition N(0) = N0.

(b) Show that in the case Q > kN0, the population crashes (i.e. N = 0) at time

t =
1

k
log

(
Q

Q− kN0

)
.



22 Ordinary Differential Equations

5 Answers to Review Questions

[1] (a) y(x) = cex
2

(b) y2 = 2 log x+ 2x+ c

(c) y(x) = ae2x − 1
2
x− 1

4

(d) y(x) = c · secx− 1

[2] y(x) = 2− 2e−2x

[3] y2 = x2 + cx

[4] θ ≈ 20.6◦ C

[5] i(t) =
E0

ω2L2 +R2

(
ωLe−Rt/L +R sin(ωt)− ωL cos(ωt)

)
[6] y(x) =

sinx

x2
+ 1

[7] (a) y(x) = ae3x + be−2x

(b) y(x) = e−x
(
a cos(3x) + b sin(3x)

)
(c) y(x) = ae3x + be−3x

(d) y(x) = a+ be9x

[8] y(x) = (2x+ 1)e3x + 2e−x

[9] (a) y(x) = ae2x + be−x + 1
2
e−2x + 2

3
xe2x

(b) y(x) = (ax+ b)e−x + 1
25
ex(3 cos x+ 4 sin x)

(c) y(x) = ae2x + bex +
(
x+ 5

6

)
e−x

[10] Not available.

[11] (a) x(t) =
t

2b
e−λt sin(bt)

(b) x(t) =
e−λt

ω2 − λ2 − b2

[
cos(bt)− cos

(√
ω2 − λ2 t

)]
[12] Not available.

[13] Steady-state solution is

E0ωC
2

(1− ω2LC)2 + (ωRC)2

[
ωR sin(ωt) +

1

C

(
1− ω2LC

)
cos(ωt)

]
[14] y(x) = 1

2
+ 1

2
e5x + 1

2
e3x sin(2x)
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[15] (a) y(x) = a+ be4x

(b) (i) y(x) = a+ be4x − 2e2x

(ii) y(x) = a+
(
b+ 3

4
x
)
e4x

(iii) y(x) = a+ be4x + 2x2 + x

[16] (a) N(t) = Q/k +
(
N0 −Q/k

)
ekt

(b) Put N = 0 and solves for t, noting that kN0 −Q < 0.


